Osteogenesis imperfecta missense mutations in collagen: structural consequences of a glycine to alanine replacement at a highly charged site.

نویسندگان

  • Jianxi Xiao
  • Haiming Cheng
  • Teresita Silva
  • Jean Baum
  • Barbara Brodsky
چکیده

Glycine is required as every third residue in the collagen triple helix, and a missense mutation leading to the replacement of even one Gly in the repeating (Gly-Xaa-Yaa)(n) sequence with a larger residue leads to a pathological condition. Gly to Ala missense mutations are highly underrepresented in osteogenesis imperfecta (OI) and other collagen diseases, suggesting that the smallest replacement residue, Ala, might cause the least structural perturbation and mildest clinical consequences. The relatively small number of Gly to Ala mutation sites that do lead to OI must have some unusual features, such as greater structural disruption because of local sequence environment or location at a biologically important site. Here, peptides are used to model a severe OI case in which a Gly to Ala mutation is found within a highly stabilizing Lys-Gly-Asp sequence environment. Nuclear magnetic resonance, circular dichroism, and differential scanning calorimetry studies indicate this Gly to Ala replacement leads to a substantial loss of triple-helix stability and nonequivalence of the Ala residues in the three chains such that only one of the three Ala residues is capable of forming a good backbone hydrogen bond. Examination of reported OI Gly to Ala mutations suggests their preferential location at known collagen binding sites, and we propose that structural defects caused by Ala replacements may lead to pathology when they interfere with interactions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Location of glycine mutations within a bacterial collagen protein affects degree of disruption of triple-helix folding and conformation.

The hereditary bone disorder osteogenesis imperfecta is often caused by missense mutations in type I collagen that change one Gly residue to a larger residue and that break the typical (Gly-Xaa-Yaa)(n) sequence pattern. Site-directed mutagenesis in a recombinant bacterial collagen system was used to explore the effects of the Gly mutation position and of the identity of the residue replacing Gl...

متن کامل

Computed free energy differences between point mutations in a collagen-like peptide.

We studied the results of mutating alanine --> glycine at three positions of a collagen-like peptide in an effort to develop a computational method for predicting the energetic and structural effects of a single point genetic mutation in collagen, which is associated with the clinical diagnosis of Osteogenesis Imperfecta (OI). The differences in free energy of denaturation were calculated betwe...

متن کامل

Computational approach towards identification of pathogenic missense mutations in AMELX gene and their possible association with amelogenesis imperfecta

Amelogenin gene (AMEL-X) encodes an enamel protein called amelogenin, which plays a vital role in tooth development. Any mutations in this gene or the associated pathway lead to developmental abnormalities of the tooth. The present study aims to analyze functional missense mutations in AMEL-X genes and derive an association with amelogenesis imperfecta. The information on miss...

متن کامل

Osteogenesis imperfecta model peptides: incorporation of residues replacing Gly within a triple helix achieved by renucleation and local flexibility.

Missense mutations, which replace one Gly with a larger residue in the repeating sequence of the type I collagen triple helix, lead to the hereditary bone disorder osteogenesis imperfecta (OI). Previous studies suggest that these mutations may interfere with triple-helix folding. NMR was used to investigate triple-helix formation in a series of model peptides where the residue replacing Gly, as...

متن کامل

Osteogenesis imperfecta--clinical and molecular diversity.

Osteogenesis imperfecta is a heritable disorder of bone formation resulting in low bone mass and a propensity to fracture. It exhibits a broad range of clinical severity, ranging from multiple fracturing in utero and perinatal death to normal adult stature and a low fracture incidence. The disorder is currently classified into seven types based on differences in clinical presentation and bone a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biochemistry

دوره 50 50  شماره 

صفحات  -

تاریخ انتشار 2011